Отдел по работе с международными рейтингами

Рейимберганов Анвар Акназарович

Начальник отдела

Рейимберганов Анвар Акназарович

Начальник отдела

CV

Personal pages

              

 

Article title Year
On the complex modified Korteweg–de Vries equation with a self-consistent source and nonzero boundary conditions
AB Khasanov, AA Reyimberganov
Ukrainian Mathematical Journal, 1-16,
2025
Enhanced photocatalytic water splitting for green hydrogen production and enrofloxacin degradation using a novel In2S3-Based ternary photocatalyst: Fabrication and mechanism …
A Amari, ABM Ali, MA Ismail, MA Diab, HA El-Sabban, E Saitov, ...
Surfaces and Interfaces 58, 105816,
2025
On the AB system with a self-consistent source
AB Khasanov, AA Reyimberganov
Àëãåáðà è àíàëèç 37 (4), 149-165,
2025
Optical properties of Euler–Heisenberg black hole surrounded by perfect fluid dark matter
GDA Yildiz, A Ditta, A Ashraf, E Güdekli, YM Alanazi, A Reyimberganov
Physics of the Dark Universe 46, 101583,
2024
On the Hirota equation with a self-consistent source
AB Khasanov, AA Reyimberganov
Theoretical and Mathematical Physics 221 (2), 1852-1866,
2024
Exploring the shadow of a rotating charged ModMax black hole
K Karshiboev, F Atamurotov, A Abdujabbarov, A Övgün, ...
Communications in Theoretical Physics 76 (2), 025401,
2024
Optimal sizing of PV/wind/diesel generator/battery hybrid system for supplying electrical vehicle charging station under different load demands in Saudi Arabia
A Basem, ZMS Elbarbary, F Atamurotov, I Abdullayeva, A Reyimberganov, ...
International Journal of Low-Carbon Technologies 19, 2522-2539,
2024
Îá óðàâíåíèè Õèðîòû ñ ñàìîñîãëàñîâàííûì èñòî÷íèêîì
ÀÁ Õàñàíîâ, ÀÀ Ðåéèìáåðãàíîâ
Òåîðåòè÷åñêàÿ è ìàòåìàòè÷åñêàÿ ôèçèêà 221 (2), 298-314,
2024
MATHEMATICAL MODEL AND CALCULATION ALGORITHM OF WASTEWATER TREATMENT TECHNOLOGICAL PROCESS
BY Palvanov, SK Jafarov, AA Reyimberganov
INTERNATIONAL SCIENTIFIC CONFERENCES WITH HIGHER EDUCATIONAL INSTITUTIONS 1 …,
2023
INTEGRATION OF THE NONLINEAR SCHRÖDINGER EQUATION WITH A SELF-CONSISTENT SOURCE AND NONZERO BOUNDARY CONDITIONS
A Reyimberganov
International Journal of Applied Mathematics 36 (3), 357–378,
2023
Ïëîñêèå âîëíû íà ìåëêèõ çàãðÿçíåííûõ âîäàõ
à Óðàçáîåâ, À Áàéìàíêóëîâ, À Ðåéèìáåðãàíîâ
3i: intellect, idea, innovation-èíòåëëåêò, èäåÿ, èííîâàöèÿ, 54-59,
2021
The soliton solutions for the nonlinear Schr¨odinger equation with self-consistent sources
GU Urazboev, AA Reyimberganov, ID Rakhimov
“ACTUAL PROBLEMS OF STOCHASTIC ANALYSIS”, 242-244,
2021
Bulletin of Irkutsk State University. Series Mathematics
GU Urazboev, MM Khasanov, II Baltaeva
Bulletin of Irkutsk State University. Series Mathematics 37, 63-76,
2021
Bulletin of Irkutsk State University. Series Mathematics
AA Reyimberganov, ID Rakhimov
Bulletin of Irkutsk State University. Series Mathematics 36, 84-94,
2021
Numerical solution of the system of Marchenko integral equations
GU Urazboev, AA Reyimberganov, ID Rakhimov
Uzbek Mathematical Journal 65 (3), pp. 159-165,
2021
PLANE WAVES ON SHALLOW POLLUTED WATERS
UU Gayrat, A Baymankulov, AA Reyimberganov
3i: intellect, idea, innovation-èíòåëëåêò, èäåÿ, èííîâàöèÿ, 54-59,
2021
Integration of the Matrix Nonlinear Schrodinger Equation with a Source
U Gayrat, R Anvar, B Aygul
Èçâåñòèÿ Èðêóòñêîãî ãîñóäàðñòâåííîãî óíèâåðñèòåòà. Ñåðèÿ: Ìàòåìàòèêà 37, 63-76,
2021
The soliton solutions for the nonlinear Schrödinger equation with self-consistent source
AA Reyimberganov, ID Rakhimov
Èçâåñòèÿ Èðêóòñêîãî ãîñóäàðñòâåííîãî óíèâåðñèòåòà. Ñåðèÿ «Ìàòåìàòèêà» 36 (0 …,
2021
THE SOLITON SOLUTIONS FOR THE NONLINEAR SCHRODINGER EQUATION WITH SELF-CONSISTENT SOURCE
R Anvar, R Ilkham
Èçâåñòèÿ Èðêóòñêîãî ãîñóäàðñòâåííîãî óíèâåðñèòåòà. Ñåðèÿ: Ìàòåìàòèêà 36, 84-94,
2021
Íî÷èçèқëè Øðåäèíãåð òåíãëàìàñè ó÷óí қ¢ëëàíèëàäèãàí ÷åêëè àéèðìàëè ñõåìàëàð
À Ðåéèìáåðãàíîâ
Èëì ñàð÷àøìàëàðè, 3-7,
2020
Numerical-analytical solutions of the nonlinear Schrödinger equation
AA Reyimberganov, ID Rakhimov
Taurida Journal of Computer Science Theory and Mathematics, 80-91,
2020
×èñëåííî-àíàëèòè÷åñêèå ðåøåíèÿ íåëèíåéíîãî óðàâíåíèÿ Øðåäèíãåðà
À Ðåéèìáåðãàíîâ, È Ðàõèìîâ
Òàâðè÷åñêèé Âåñòíèê Èíôîðìàòèêè è Ìàòåìàòèêè 46 (1), 80-92,
2020
Numerical Solution of the system of Marchenko integral equations
G Urazboev, A Reyimberganov, I Rakhimov
Actual problems oof applied mathematics and information technologies, 66,
2019
On the discrete nonlinear Schrödinger equation with a self-consistent source
A Reyimberganov, O Karimov
Actual problems oof applied mathematics and information technologies, 29-30,
2019
Èíòåãðèðîâàíèå âûñøåãî ìîäèôèöèðîâàííîãî óðàâíåíèÿ Êîðòåâåãà-äå Ôðèçà ñ ñàìîñîãëàñîâàííûì èñòî÷íèêîì â êëàññå êîíå÷íî ïëîòíûõ ôóíêöèé
ÀÀ Ðåéèìáåðãàíîâ
Toshkent shahridagi Turin politexnika universiteti, 149,
2017
Èíòåãðèðîâàíèå íåëèíåéíîå óðàâíåíèÿ Øðåäèíãåðà
ÀÀ Ðåéèìáåðãàíîâ
2016
Èíòåãðèðîâàíèå íåëèíåéíîå óðàâíåíèÿ Øðåäèíãåðà, 2016
ÀÀ Ðåéèìáåðãàíîâ
2016
Íî÷èçèқëè òåíãëàìàëàðíè å÷èø ó÷óí þқîðè òàðòèáëè ÿқèíëàøóâ÷è èòåðàöèîí óñóëëàð
À Ðåéèìáåðãàíîâ
Èëì ñàð÷àøìàëàðè, 8-11,
2016
Èíòåãðèðîâàíèå íåëèíåéíîå óðàâíåíèÿ Øðåäèíãåðà
ÀÀ Ðåéèìáåðãàíîâ
https://www.buecher.de/shop/mathematik-naturwissenschaften--technik …,
2016
Èíòåãðèðîâàíèå âûñøåãî íåëèíåéíîãî óðàâíåíèÿ Øðåäèíãåðà ñ ñàìîñîãëàñîâàííûì èñòî÷íèêîì èíòåãðàëüíîãî òèïà
ÀÀ Ðåéèìáåðãàíîâ
Ìîëîäîé ó÷åíûé, 1-7,
2016
Èíòåãðèðîâàíèå âûñøåãî ìîäèôèöèðîâàíîãî óðàâíåíèÿ Êîðòåâåãà-äå Ôðèçà ñ ñàìîñîãëàñîâàííûì èñòî÷íèêîì â êëàññå êîíå÷íî ïëîòíûõ ôóíêöèé
À Ðåéèìáåðãàíîâ, Ì Ðóçìåòîâ
Ìàòåðèàëû Ðåñïóáëèêàíñêîé íàó÷íîé êîíôå-ðåíöèè “Àêòóàëüíûå ïðîáëåìû …,
2012
Î ðåøåíèè âûñøåãî íåëèíåéíîãî óðàâíåíèÿ Øðåäèíãåðà ñ ñàìîñîãëàñîâàííûì èñòî÷íèêîì èíòåãðàëüíîãî òèïà
ÀÁ Õàñàíîâ, ÀÀ Ðåéèìáåðãàíîâ
Ñîâðåìåííûå ïðîáëåìû êîìïëåêñíîãî è ôóíêöèîíàëüíîãî àíàëèçà, 11-12,
2012
Î êîíå÷íî ïëîòíîì ðåøåíèè ìîäèôèöèðîâàííîãî óðàâíåíèÿ Êîðòåâåãà-äå Ôðèçà ñ ñàìîñîãëàñîâàííûì èñòî÷íèêîì
À Ðåéèìáåðãàíîâ, Ì Ðóçìåòîâ
Òðóäû ðåñïóáëèêàíñêîé êîíôåðåíöèè "Ñîâðå-ìåííûå ïðîáëåìû êîìïëåêñíîãî 蠅,
2012
On the height order nonlinear Schrödinger equation with a self-consistent source
AK A.Reyimberganov
The 4-th congress of the Turkic world mathemati-cal society, 230,
2011
Èíòåãðèðîâàíèå íåëèíåéíîå óðàâíåíèÿ Øðåäèíãåðà ñ ñàìîñîãëàñîâàííûì èñòî÷íèêîì â êëàññå êîíå÷íî ïëîòíûõ ôóíêöèé, 2011
À Ðåéèìáåðãàíîâ
Èíñòèòóò Ìàòåìàòèêè è èíôîðìàöèîííûõ òåõíîëîãèé ÀÍ ÐÓç,
2011
Èíòåãðèðîâàíèå íåëèíåéíîå óðàâíåíèÿ Øðåäèíãåðà ñ ñàìîñîãëàñîâàííûì èñòî÷íèêîì â êëàññå êîíå÷íî ïëîòíûõ ôóíêöèé
À Ðåéèìáåðãàíîâ
Èíñòèòóò Ìàòåìàòèêè è èíôîðìàöèîííûõ òåõíîëîãèé ÀÍ ÐÓç,
2011
On the finite-density solution of the nonlinear Schrodinger equation with a self-consistent source
AB Khasanov, AA Reyimberganov
Uzbek. Mat. Zh., 123–130,
2009
Î êîíå÷íî ïëîòíîì ðåøåíèè íåëèíåéíîãî óðàâíåíèÿ Øðåäèíãåðà ñ ñàìîñîãëàñîâàííûì èñòî÷íèêîì
ÀÁ Õàñàíîâ, ÀÀ Ðåéèìáåðãàíîâ
Óçáåêñêèé ìàòåìàòè÷åñêèé æóðíàë, 123-130,
2009
Êîíå÷íî ïëîòíûå ðåøåíèÿ âûñøåãî íåëèíåéíîãî óðàâíåíèÿ Øðåäèíãåðà ñ ñàìîñîãëàñîâàííûì èñòî÷íèêîì
ÀÁ Õàñàíîâ, ÀÀ Ðåéèìáåðãàíîâ
Óôèìñêèé ìàòåìàòè÷åñêèé æóðíàë 1 (4), 133-143,
2009
Î êîíå÷íî ïëîòíûì ðåøåíèè íåëèíåéíîãî óðàâíåíèÿ Øðåäèíãåðà ñ ñàìîñîãëàñîâàííûì èñòî÷íèêîì
À Ðåéèìáåðãàíîâ
Äîêëàäû àêàäåìèè íàóê Ðåñïóáëèêè Óçáåêèñòàí, 14-17,
2009
About the finite density solution of the higher nonlinear Schrodinger equation with self-consistent source
AB Khasanov, AA Reyimberganov
Ufimskii Matematicheskii Zhurnal 1 (4), 133-143,
2009
Îá èíòåãðèðîâàíèè ìîäèôèöèðîâàííîãî óðàâíåíèÿ Êîðòåâåãà-äå Ôðèçà ñ èñòî÷íèêîì èíòåãðàëüíîãî òèïà
ÊÀ Ìàìåäîâ, ÀÀ Ðåéèìáåðãàíîâ
Äîêëàäû Àêàäåìèè íàóê ÐÓç, 24-28,
2006