Sharipov Rasulbek Axmedovich
Resume
Article title | Year |
---|---|
Introduction to potential theory in the class of 𝑚-convex functions A Sadullaev, R Sharipov Filomat 39 (9), 3029-3034, | 2025 |
m cv measure ω*(x, E, D) and condenser capacity C (E, D) in the class m-convex functions A Sadullaev, R Sharipov, M Ismoilov Journal of Siberian Federal University. Ñèáèðñêèé ôåäåðàëüíûé óíèâåðñèòåò, | 2025 |
Hessian measures in the class of m-convex (m-cv) functions MB Ismoilov, RA Sharipov Bulletin of the Karaganda University. Mathematics Series 115 (3), 93-100, | 2024 |
Λ-separately subharmonic functions S Imomkulov, S Abdikadirov, R Sharipov AIP Conference Proceedings 3147 (1), 020007, | 2024 |
Maximal Functions and the Dirichlet Problem in the Class of m-convex Functions A Sadullaev, R Sharipov Æóðíàë Ñèáèðñêîãî ôåäåðàëüíîãî óíèâåðñèòåòà. Ìàòåìàòèêà è ôèçèêà 17 (4 , | 2024 |
m-convex (m− cv) functions RA Sharipov, MB Ismoilov Azerbaijan Journal of Mathematics 13 (2), 237-247, | 2023 |
Polar sets of -convex functions RA Sharipov, MB Ismoilov Polar 11, 30-12, | 2023 |
α-subharmonic functions BI Abdullaev, SA Imomkulov, RA Sharipov Contemporary mathematics. Fundamental directions 67 (4), 620-633, | 2021 |
Àíàëîã òåîðåìà Áëàíøåòà äëÿ α-ãàðìîíè÷åñêèõ ôóíêöèé Øàðèïîâ Ð.À., Àáäèêàäèðîâ Ñ. Ì. Cáîðíèê òåçèñîâ Ìåæäóíàðîäíîé êîíôåðåíöèè. ã. ÓÔÀ, ÀÝÒÅÐÍÀ "Òåîðèÿ ôóíêöèé , | 2021 |
Î ñåïàðàòíî α-ãàðìîíè÷åñêèõ ôóíêöèÿõ Øàðèïîâ Ð.À., Àáäèêàäèðîâ Ñ. Ì. Ðåñïóáëèêàíñêîé íàó÷íîé êîíôåðåíöèè ñ ó÷àñòèåì çàðóáåæíûõ ó÷åíûõ , | 2021 |
Âåñòíèê Óäìóðòñêîãî óíèâåðñèòåòà. Ìàòåìàòèêà. Ìåõàíèêà. Êîìïüþòåðíûå íàóêè ÁÈ Àáäóëëàåâ, ÑÀ ÈÌÎÌÊÓËÎÂ, ÐÀ ØÀÐÈÏÎÂ ÂÅÑÒÍÈÊ ÓÄÌÓÐÒÑÊÎÃÎ ÓÍÈÂÅÐÑÈÒÅÒÀ 31 (4), 519-535, | 2021 |
Structure of singular sets of some classes of subharmonic functions BI Abdullaev, SA Imomkulov, RA Sharipov Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki , | 2021 |
ÑÒÐÓÊÒÓÐÀ ÎÑÎÁÛÕ ÌÍÎÆÅÑÒ ÍÅÊÎÒÎÐÛÕ ÊËÀÑÑΠÑÓÁÃÀÐÌÎÍÈ×ÅÑÊÈÕ ÔÓÍÊÖÈÉ ÁÈÈ Àáäóëëàåâ, ÑÀ Èìîìêóëîâ, ÐÀ Øàðèïîâ ÌÀÒÅÌÀÒÈÊÀ 31 (4), 519-535, | 2021 |
Óñòðàíèìûå îñîáåííîñòè ñèëüíî m--ñóáãàðìîíè÷åñêèõ ôóíêöèé èç êëàññîâ Lp è Lp,1 ÁÈÈ Àáäóëëàåâ, ÑÀ Èìîìêóëîâ, ÐÀ Øàðèïîâ Äîêëàäû Àêàäåìèè íàóê Ðåñïóáëèêè Óçáåêèñòàí, 3-8, | 2021 |
α - ñåïàðàòíî ñóáãàðìîíè÷åñêèå ôóíêöèè ØÐÀ Èìîìêóëîâ Ñ.À., Àáäèêàäèðîâ Ñ.Ì. Ìàòåðèàëû ìåæäóíàðîäíîé íàó÷íî-ïðàêòè÷åñêîé îíëàéí-êîíôåðåíöèè. Òåîðèè , | 2020 |
α - SEPARATELY SUBHARMONIC FUNCTIONS SA Imomkulov, SM Abdikodirov, S R.A Central Asian Problems of Modern Science and Education 5 (3), 1-15, | 2020 |
Î CÅÏÀÐÀÒÍÎ α−ÃÀÐÌÎÍÈ×ÅÑÊÈÕ ÔÓÍÊÖÈßÕ ØÐÀ Èìîìêóëîâ Ñ.À., Àáäèêàäèðîâ Ñ.Ì. FRONTIER IN MATHEMATICS AND COMPUTER SCIENCE, 145, | 2020 |
α - åìêîñòü è åãî ñâÿçü ñ òðàíñôèíèòíèì Kα -äèàìåòðîì â êëàññå α -ñóáãàðìîíè÷åñêèõ ôóíêöèé. ÕÃÊ Øàðèïîâ Ð.À., Âàèñîâà Ì.Ä. Õîðàçì Ìàúìóí àêàäåìèÿñè àõáîðîòíîìàñè. 10, 283-289, | 2020 |
Àíèқìàñ òåíãëàìàëàð ØÐÀ Àáäóëëàåâ Á.È., Õóæàìîâ Æ.Ó. Ôèçèêà-ìàòåìàòèêà âà èíôîðàòèêà. Òîøêåíò 5, 9-16, | 2020 |
Îá óñòðàíèìûõ îñîáûõ ìíîæåñòâàõ íåêîòîðûõ êëàññîâ α -ñóáãàðìîíè÷åñêèõ ôóíêöèé ÑҒÐ Øàðèïîâ Ð.À. Ìàòåðèàëû ðåñïóáëèêàíñêîé íàó÷íîé îíëàéí-êîíôåðåíöèè Ñîâðåìåííûå ïðîáëåìû , | 2020 |
ANIQMAS TENGLAMALAR BI Abdullayev, JU Xujamov, RA Sharipov FIZIKA, MATEMATIKA va INFORMATIKA, 19, | 2020 |
α -SEPARATELY SUBHARMONIC FUNCTIONS. SA Imomkulov, SM Abdikodirov, R Sharipov Central Asian Problems of Modern Science and Education (3), 66-80, | 2020 |
Ëîêàëüíî è ãëîáàëüíî α - ïîëÿðíûå ìíîæåñòâà ØÐÀ Àáäóëëàåâ Á.È. Ìàòåðèàëû ðåñïóáëèêàíñêîé íàó÷íîé êîíôåðåíöèè «Àêòóàëüíûå ïðîáëåìû è , | 2019 |
Ëîêàëüíî è ãëîáàëüíî α - ïîëÿðíûå ìíîæåñòâà ØÐÀ Àáäóëëàåâ Á.È. Áþëëåòåíü Èíñòèòóòà ìàòåìàòèêè, Òàøêåíò, 4-8, | 2019 |
P-ìåðà è P-åìêîñòü â êëàññå ñóáãàðìîíè÷åñêèõ ôóíêöèé ØÐ À Äîêëàäû Àêàäåìèè íàóê Ðåñïóáëèêè, Òàøêåíò, 11-15, | 2019 |
Óñòðàíèìûå îñîáåííîñòè α -ñóáãàðìîíè÷åñêèõ ôóíêöèé èç êëàññîâ Lp è L1,p ÁÑÝ Øàðèïîâ Ð.À. Òåçèñû ðåñïóáëèêàíñêîé íàó÷íîé êîíôåðåíöèè «Ïðîáëåìû è ïðèëîæåíèÿ , | 2019 |
P-ìåðà è P-åìêîñòü â êëàññå α - ñóáãàðìîíè÷åñêèõ ôóíêöèé ØÐ À. Òåçèñû ðåñïóáëèêàíñêîé íàó÷íîé êîíôåðåíöèè «Ïðîáëåìû è ïðèëîæåíèÿ , | 2019 |
Óñòðàíèìûå îñîáåííîñòè α -ñóáãàðìîíè÷åñêèõ ôóíêöèé èç êëàññîâ Lp è L1,p ÁÑÝ Øàðèïîâ Ð.À. Èëì ñàð÷àøìàëàðè, 3-7, | 2019 |
Çàäà÷à Äèðèõëå â êëàññå α -ñóáãàðìîíè÷åñêèõ ôóíêöèé ØÐ À. Èëì ñàð÷àøìàëàðè, 12-16, | 2019 |
Óñòðàíèìûå îñîáåííîñòè m-ñóáãàðìîíè÷åñêèõ ôóíêöèé èç êëàññà C^1,1 ÐÇÐ Øàðèïîâ Ð. À. Èëì ñàð÷àøìàëàðè, 3-5, | 2019 |
Ëîêàëüíî è ãëîáàëüíî α -ïîëÿðíûå ìíîæåñòâà ØÐÀ Àáäóëëàåâ Á.È. Áþëëåòåíü Èíñòèòóòà ìàòåìàòèêè, 4-8, | 2019 |
RUS ENG JOURNALS PEOPLE ORGANISATIONS CONFERENCES SEMINARS VIDEO LIBRARY PACKAGE AMSBIB ON Khakimov Functional analysis and its applications 10, 30-11, | 2018 |
Removable Singular Sets of m-Subharmonic Functions BI Abdullaev, SA Imomkulov, RA Sharipov USA-Uzbekistan Conference, 1-11, | 2017 |
A removable singularity of the bounded above m− sh functions AS Sadullaev, BI Abdullaev, RA Sharipov Uzbek Mathematical Journal, 118-124, | 2016 |
MATEMATIKADAN OLIMPIADA MASALALARI BI Abdullaev, JU Xujamov, RA Sharipov | 2016 |
BIR JINSLI KO PHADLARNING FORMAL QATORI YIG INDISINING GOLOMORFLIK SOHASI HAQIDA SR Axmedovich MATERIALLARI TO PLAMI, 116, 0 | |
Annotatsiya: Ushbu maqolada n haqiqiy fazoda ikki marta silliq bo lgan m-qavariq (m cv-) funksiyalarning n kompleks fazoda kuchli m-subgarmonik (m sh) funksiyalar bilan bog
SR Axmedovich, IM Bakhrom o'g'li PIRNIYAZOV ISKANDER KUDIYAROVICH///THE PROBLEM OF COMPETENCE AND SELF , 0 | |
Maximal -convex functions and the Dirichlet problem in the class of -convex functions RA Sharipov | |
Mixed Hessians in the class of -convex functions RA Sharipov | |
Íåêîòîðûå ñâîéñòâà -âûïóêëûõ ôóíêöèé RA Sharipov | |
Hessian measures in the class of -convex functions RA Sharipov | |
Maximum and functions RA Sharipov, MB Ismoilov | |
Maximum functions and the Dirichlet problem in the class of -convex functions RA Sharipov, AS Sadullaev |