Article title | Year |
---|---|
Siegel domains and Cartan-Siegel homogeneous domains: Siegel disk U Rakhmonov, A Abdukarimov, J Abdullaev, S Rajabov AIP Conference Proceedings 3256 (1), 040019, | 2025 |
Functional Properties of the Bergman Kernel in the Space GK Khudayberganov, JS Abdullayev, US Rakhmonov Lobachevskii Journal of Mathematics 46 (3), 1322-1335, | 2025 |
On Carleman's formula in G Khudaiberganov, BB Prenov, JS Abdullayev, KS Ruzmetov Æóðíàë Ñèáèðñêîãî ôåäåðàëüíîãî óíèâåðñèòåòà. Ñåðèÿ «Ìàòåìàòèêà è ôèçèêà» 18 , | 2025 |
On Carleman's formula in G Khudaiberganov, BB Prenov, JS Abdullayev, KS Ruzmetov Æóðíàë Ñèáèðñêîãî ôåäåðàëüíîãî óíèâåðñèòåòà. Ñåðèÿ «Ìàòåìàòèêà è ôèçèêà» 18 , | 2025 |
On the Blaschke matrix product and an analogue of the Horwitz-Rubel theorem for the Blaschke matrix product JS Abdullayev, GK Khudayberganov | 2025 |
On Carlemans Formula in Cn [m X m] GG Khudayberganov, BB Prenov, JS Abdullayev, KS Ruzmetov Journal of Siberian Federal University. Ñèáèðñêèé ôåäåðàëüíûé óíèâåðñèòåò, | 2025 |
INTEGRAL FORMULAS RELATED TO THE CAUCHY-FANTAPPIÈ INTEGRAL FORMULA JS Abdullayev, G Khudayberganov, NO Mahmudova Palestine Journal of Mathematics 14 (1), | 2025 |
Carlemans Integral Formula in Cartesian Product of Matrix Upper Half-Plane. JS Abdullayev, KS Ruzmetov, ZK Matyakubov | 2024 |
Sie el omain and artan Sie el omo eneou omain Sie el ik U Rakhmonov, A Abdukarimov, J Abdullaev, S Rajabov | 2023 |
CHEGARALANMAGAN SOHALARDA KARLEMAN INTEGRAL FORMULASI RK Sh, ZQ Matyoqubov, AJ Sh O ZBEKISTON RESPUBLIKASI OLIY TALIM, FAN VA INNOVATSIYALAR VAZIRLIGI , | 2023 |
AN ANALOGUE OF BREMERMANNS THEOREM ON FINDING THE BERGMAN KERNEL FOR THE CARTESIAN PRODUCT OF THE CLASSICAL DOMAINS AND JA Shokirovich CENTRAL ASIAN JOURNAL OF MATHEMATICAL THEORY AND COMPUTER SCIENCES 3 (9), 34-43, | 2022 |
ON PROPERTIES OF THE SECOND TYPE MATRIX BALL B (2) FROM SPACE CN [M× M] AJ Sh Æóðíàë Ñèáèðñêîãî ôåäåðàëüíîãî óíèâåðñèòåòà. Ìàòåìàòèêà è ôèçèêà 15 (3 , | 2022 |
Îöåíêè ÿäðà Áåðãìàíà äëÿ êëàññè÷åñêèõ îáëàñòåé Ý. Êàðòàíà ÆØ Àáäóëëàåâ ×åáûøåâñêèé ñáîðíèê 22 (3), 20-31, | 2021 |
Ðÿäû Ëîðàíà-Õóà Ëî-êåíà îòíîñèòåëüíî ìàòðè÷íîãî øàðà èç ïðîñòðàíñòâà Cn [m× m] ÃÕ Õóäàéáåðãàíîâ, ÆØ Àáäóëëàåâ | 2021 |
The boundary Morera theorem for domain G Khudayberganov, JS Abdullayev Óôèìñêèé ìàòåìàòè÷åñêèé æóðíàë 13 (3), 196-210---191-205, | 2021 |
Èíòåãðàëüíûå ôîðìóëû â êëàññè÷åñêèõ îáëàñòÿõ è èõ ïðèëîæåíèÿ JS Abdullayev Functional analysis and its applications 9, 00-10, | 2021 |
×åáûøåâñêèé ñáîðíèê JS ABDULLAYEV ×ÅÁÛØÅÂÑÊÈÉ ÑÁÎÐÍÈÊ Ó÷ðåäèòåëè: Òóëüñêèé ãîñóäàðñòâåííûé ïåäàãîãè÷åñêèé , | 2021 |
Ïðèìåíåíèÿ îðòîíîðìàëüíûõ ñèñòåì â ìàòðè÷íîì øàðå JS Abdullayev http://www.mathnet.ru/php/seminars.phtml?&presentid=30146&option_lang=eng, | 2021 |
ESTIMATES THE BERGMAN KERNEL FOR CLASSICAL DOMAINS´ E. CARTANS AJ Shokirovich ×åáûøåâñêèé ñáîðíèê 22 (3 (79)), 20-31, | 2021 |
THE BOUNDARY MORERA THEOREM FOR DOMAIN T+ (N-1) K Gulmirza, AJ Shokirovich Óôèìñêèé ìàòåìàòè÷åñêèé æóðíàë 13 (3), 196-210, | 2021 |
Estimates the Bergman kernel for classical domains É. Cartan's JS Abdullayev ×åáûøåâñêèé ñáîðíèê 22 (3), 20-31, | 2021 |
Laurent-Hua Loo-Keng Series with Respect to the Matrix Ball from Space Cn [m× m] KG Kh, AJ Sh Æóðíàë Ñèáèðñêîãî ôåäåðàëüíîãî óíèâåðñèòåòà. Ìàòåìàòèêà è ôèçèêà 14 (5 , | 2021 |
Laurent-Hua Luogeng Series with Respect to the Matrix Ball from Space Cn [m× m] GK Khudayberganov, JS Abdullayev Ñèáèðñêèé ôåäåðàëüíûé óíèâåðñèòåò. Siberian Federal University, | 2021 |
THE BOUNDARY MORERA THEOREM FOR DOMAIN 𝜏 (𝑛− 1) G KHUDAYBERGANOV, JS ABDULLAYEV | 2021 |
Holomorphic continuation into a matrix ball of functions defined on a piece of its skeleton G Khudaiberganov, JS Abdullayev Âåñòíèê Óäìóðòñêîãî óíèâåðñèòåòà. Ìàòåìàòèêà. Ìåõàíèêà. Êîìïüþòåðíûå íàóêè , | 2021 |
An analogue of Bremermanns theorem on finding the Bergman kernel for the Cartesian product of the classical domains ℜI (m, k) and ℜII (n) JS Abdullayev Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica 94 (3), 88-96, | 2020 |
An analogue of Bremermann's theorem on finding the Bergman kernel for the Cartesian product of the classical domains RI (m, k) and RII (n). J Sh Abdullayev Buletinul Academiei de Ştiinţe a Republicii Moldova: Matematica 94 (3), | 2020 |
THE BERGMAN KERNEL ESTIMATION OF FOR THE LIE BALL US Rakhmonov, AJ Sh ÑÎÂÐÅÌÅÍÍÛÅ ÏÐÎÁËÅÌÛ ÌÀÒÅÌÀÒÈÊÈ, Êàðàêàëïàêñêîì ãîñóäàðñòâåííîì , | 2020 |
Laplace and Hua Luogeng operators G Khudayberganov, AM Khalknazarov, JS Abdullayev Russian Mathematics 64 (3), 66-71, | 2020 |
Abdullayev, Relationship between the Kernels Bergman and Cauchy-Szego in the domains τ+(n− 1) and ℜn IV G Khudayberganov, J Sh Journal of Siberian Federal University. Mathematics, 559-567, | 2020 |
Relationship Between the Bergman and Cauchy-Szegö Kernels in the Domains τ+ (n - 1) and
GK Khudayberganov, JS Abdullayev Journal of Siberian Federal University. Mathematics & Physics 13 (5), 559-567, | 2020 |
Relationship between the Bergman and Cauchy-Szegö kernels in the domains 𝜏+(𝑛− 1) and ℜï IV G Khudayberganov, AJ Sh J. Sib. Fed. Univ. Math. Phys 13 (5), 559-567, | 2020 |
THE BOUNDARY MORERA THEOREM G KHUDAYBERGANOV, JS ABDULLAYEV | 2020 |
Relationship Between the Bergman and Cauchy-Szego¨ Kernels in the Domains τ + (n - 1) and ℜnIV ÃÕ Õóäàéáåðãàíîâ, ÆØ Àáäóëëàåâ Æóðíàë Ñèáèðñêîãî ôåäåðàëüíîãî óíèâåðñèòåòà. Ñåðèÿ: Ìàòåìàòèêà è ôèçèêà 13 , | 2020 |
THE BOUNDARY MORERA THEOREM FOR UNBOUNDED REALIZATION OF THE LIE BALL G Khudayberganov, AJ Sh FRONTIER IN MATHEMATICS AND COMPUTER SCIENCE 12, 51, | 2020 |
Relationship between the Bergman and Cauchy-Szegö in the domains G Khudaiberganov, JS Abdullayev Æóðíàë Ñèáèðñêîãî ôåäåðàëüíîãî óíèâåðñèòåòà. Ñåðèÿ «Ìàòåìàòèêà è ôèçèêà» 13 , | 2020 |
ÑÂßÇÜ ÌÅÆÄÓ ßÄÐÀÌÈ ÁÅÐÃÌÀÍÀ È ÊÎØÈ-ÑÅÃÅ Â ÎÁËÀÑÒßÕ τ+(N-1) È ℜNIV ÃÕ Õóäàéáåðãàíîâ, ÆØ Àáäóëëàåâ Æóðíàë Ñèáèðñêîãî ôåäåðàëüíîãî óíèâåðñèòåòà. Ìàòåìàòèêà è ôèçèêà 13 (5 , | 2020 |
Relationship Between the Bergman and Cauchy-Szeg¨ o Ker-nels in the Domains+(n-1) and ℜn IV GK Khudayberganov, JS Abdullayev Ñèáèðñêèé ôåäåðàëüíûé óíèâåðñèòåò. Siberian Federal University, | 2020 |
Laplace and Hua Luogeng operators G Khudaiberganov, AM Khalknazarov, JS Abdullayev Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 74-79, | 2020 |
Îá îïåðàòîðàõ Ëàïëàñà è Õóà Ëî-Êåíà à Õóäàéáåðãàíîâ, ÀÌ Õàëêíàçàðîâ, ÆØ Àáäóëëàåâ Èçâåñòèÿ âûñøèõ ó÷åáíûõ çàâåäåíèé. Ìàòåìàòèêà, 74-79, | 2020 |
ABOUT VOLUMES OF MATRIX THIRD TYPE AND GENERALIZED LIE BALLS U Rakhmonov, J Abdullayev Âåñòíèê Óäìóðòñêîãî óíèâåðñèòåòà. Ìàòåìàòèêà. Ìåõàíèêà. Êîìïüþòåðíûå íàóêè , | 2019 |
ABOUT REALIZATION OF LIE BALL AJS Khudayberganov G. Actual problems and applications of analysis, October 4-5, , Karshi , | 2019 |
ÎÁ ÎÄÍÎÌ ÏÐÈÌÅÐÅ ÃÎËÎÌÎÐÔÍÛÕ ÈÇÎÌÅÒÐÈÉ B^n  K^(n+1)_IV . ÓÑÐ Æ. Ø. Àáäóëëàåâ FUNDAMENTAL MATEMATIKA MUAMMOLARI VA ULARNING TATBIQLARI, RESPUBLIKA ILMIY , | 2019 |
ON HUA LO-KEN AND LAPLACE OPERATORS AJ Khudayberganov G. , Khalknazarov A. STEMM: Science Technology Education Mathematics Medicine. Abstracts , | 2019 |
Îá îäíîé ðåàëèçàöèè øàðà Ëè ÆØÀ Ã.Õóäàéáåðãàíîâ PROCEEDINGS of republican scientific-applied conference STATISTICS and its , | 2019 |
ABOUT REALIZATION OF LIE BALL AJ Khudayberganov G. Actual problems and applications of analysis, October 4-5, , Karshi , | 2019 |
Vestnik Udmurtskogo Universiteta US Rakhmonov, AJ Sh Matematika. Mekhanika. Komp'yuternye Nauki 29 (4), 548-557, | 2019 |
ON VOLUMES OF MATRIX BALL OF THIRD TYPE AND GENERALIZED LIE BALLS JAS Uktam Rakhmonov Sodiqovich Âåñòíèê Óäìóðòñêîãî óíèâåðñèòåòà. Ìàòåìàòèêà. Ìåõàíèêà. Êîìïüþòåðíûå íàóêè , | 2019 |
FORMULAS OF CARLEMAN IN THE DOMAINS OF SIEGEL MZ Kadambayevich, AJ Shokirovich Zbiór artykułów naukowych recenzowanych., 51, | 2018 |
Journal of Siberian Federal University. Mathematics & Physics GK Khudayberganov, JS Abdullayev Journal of Siberian Federal University. Mathematics & Physics 11 (1), 40-45, | 2018 |
ÔÎÐÌÓËÛ ÊÀÐËÅÌÀÍÀ Â ÎÁËÀÑÒßÕ ÇÈÃÅËß ÇÊ Ìàòÿêóáîâ, ÆØ Àáäóëëàåâ TOSHKENT SHAHRIDAGI TURIN POLITEXNIKA UNIVERSITETI, 34, | 2017 |
THE BOUNDARY MORERA THEOREM FOR DOMAIN τ (n− 1) G KHUDAYBERGANOV, JS ABDULLAYEV | |
Ðÿäû Ëîðàíà îòíîñèòåëüíî ìàòðè÷íîãî øàðà à Õóäàéáåðãàíîâ | |
Èíòåãðàëüíûå ôîðìóëû â , àññîöèèðîâàííûõ ñ ðåàëèçàöèåé øàðà Ëè è íåêîòîðûå èõ ïðèëîæåíèÿ JS Abdullayev | |
Îá îäíîé ðåàëèçàöèè øàðà Ëè è àâòîìîðôèçìû îáëàñòè JS Abdullayev | |
Îá îäíîé ðåàëèçàöèè øàðà Ëè è àâòîìîðôèçìû îáëàñòè ÆØ Àáäóëëàåâ | |
Ïðèìåíåíèÿ îðòîíîðìàëüíûõ ñèñòåì â ìàòðè÷íîì øàðå ÆØ Àáäóëëàåâ | |
Èíòåãðàëüíûå ôîðìóëû â êëàññè÷åñêèõ îáëàñòÿõ è èõ ïðèëîæåíèÿ ÆØ Àáäóëëàåâ | |
Èíòåãðàëüíûå ôîðìóëû â , àññîöèèðîâàííûõ ñ ðåàëèçàöèåé øàðà Ëè è íåêîòîðûå èõ ïðèëîæåíèÿ ÆØ Àáäóëëàåâ | |
Uzbek Mathematical Journal 2021, Volume 65, Issue 1, pp. 17-27 AJ Sh | |
Abdullayev US Rakhmonov, J Sh Æóðíàë Ñèáèðñêîãî ôåäåðàëüíîãî óíèâåðñèòåòà Ìàòåìàòèêà è ôèçèêà 2, 0 | |
Abdullayev, About one realization Lie ball G Khudayberganov, J Sh Contemporary Mathematics. Fundamental Directions, 0 |