Abdullayev Jonibek Shokirovich

Associate professor

Abdullayev Jonibek Shokirovich

Associate professor

Article title Year
Siegel domains and Cartan-Siegel homogeneous domains: Siegel disk
U Rakhmonov, A Abdukarimov, J Abdullaev, S Rajabov
AIP Conference Proceedings 3256 (1), 040019,
2025
Functional Properties of the Bergman Kernel in the Space
GK Khudayberganov, JS Abdullayev, US Rakhmonov
Lobachevskii Journal of Mathematics 46 (3), 1322-1335,
2025
On Carleman's formula in
G Khudaiberganov, BB Prenov, JS Abdullayev, KS Ruzmetov
Æóðíàë Ñèáèðñêîãî ôåäåðàëüíîãî óíèâåðñèòåòà. Ñåðèÿ «Ìàòåìàòèêà è ôèçèêà» 18 …,
2025
On Carleman's formula in
G Khudaiberganov, BB Prenov, JS Abdullayev, KS Ruzmetov
Æóðíàë Ñèáèðñêîãî ôåäåðàëüíîãî óíèâåðñèòåòà. Ñåðèÿ «Ìàòåìàòèêà è ôèçèêà» 18 …,
2025
On the Blaschke matrix product and an analogue of the Horwitz-Rubel theorem for the Blaschke matrix product
JS Abdullayev, GK Khudayberganov
2025
On Carleman’s Formula in Cn [m X m]
GG Khudayberganov, BB Prenov, JS Abdullayev, KS Ruzmetov
Journal of Siberian Federal University. Ñèáèðñêèé ôåäåðàëüíûé óíèâåðñèòåò,
2025
INTEGRAL FORMULAS RELATED TO THE CAUCHY-FANTAPPIÈ INTEGRAL FORMULA
JS Abdullayev, G Khudayberganov, NO Mahmudova
Palestine Journal of Mathematics 14 (1),
2025
Carleman’s Integral Formula in Cartesian Product of Matrix Upper Half-Plane.
JS Abdullayev, KS Ruzmetov, ZK Matyakubov
2024
Sie el omain and artan Sie el omo eneou omain Sie el ik
U Rakhmonov, A Abdukarimov, J Abdullaev, S Rajabov
2023
CHEGARALANMAGAN SOHALARDA KARLEMAN INTEGRAL FORMULASI
RK Sh, ZQ Matyoqubov, AJ Sh
O ‘ZBEKISTON RESPUBLIKASI OLIY TA’LIM, FAN VA INNOVATSIYALAR VAZIRLIGI …,
2023
AN ANALOGUE OF BREMERMANN’S THEOREM ON FINDING THE BERGMAN KERNEL FOR THE CARTESIAN PRODUCT OF THE CLASSICAL DOMAINS AND
JA Shokirovich
CENTRAL ASIAN JOURNAL OF MATHEMATICAL THEORY AND COMPUTER SCIENCES 3 (9), 34-43,
2022
ON PROPERTIES OF THE SECOND TYPE MATRIX BALL B (2) FROM SPACE CN [M× M]
AJ Sh
Æóðíàë Ñèáèðñêîãî ôåäåðàëüíîãî óíèâåðñèòåòà. Ìàòåìàòèêà è ôèçèêà 15 (3 …,
2022
Îöåíêè ÿäðà Áåðãìàíà äëÿ êëàññè÷åñêèõ îáëàñòåé Ý. Êàðòàíà
ÆØ Àáäóëëàåâ
×åáûøåâñêèé ñáîðíèê 22 (3), 20-31,
2021
Ðÿäû Ëîðàíà-Õóà Ëî-êåíà îòíîñèòåëüíî ìàòðè÷íîãî øàðà èç ïðîñòðàíñòâà Cn [m× m]
ÃÕ Õóäàéáåðãàíîâ, ÆØ Àáäóëëàåâ
2021
The boundary Morera theorem for domain
G Khudayberganov, JS Abdullayev
Óôèìñêèé ìàòåìàòè÷åñêèé æóðíàë 13 (3), 196-210---191-205,
2021
Èíòåãðàëüíûå ôîðìóëû â êëàññè÷åñêèõ îáëàñòÿõ è èõ ïðèëîæåíèÿ
JS Abdullayev
Functional analysis and its applications 9, 00-10,
2021
×åáûøåâñêèé ñáîðíèê
JS ABDULLAYEV
×ÅÁÛØÅÂÑÊÈÉ ÑÁÎÐÍÈÊ Ó÷ðåäèòåëè: Òóëüñêèé ãîñóäàðñòâåííûé ïåäàãîãè÷åñêè項,
2021
Ïðèìåíåíèÿ îðòîíîðìàëüíûõ ñèñòåì â ìàòðè÷íîì øàðå
JS Abdullayev
http://www.mathnet.ru/php/seminars.phtml?&presentid=30146&option_lang=eng,
2021
ESTIMATES THE BERGMAN KERNEL FOR CLASSICAL DOMAINS´ E. CARTAN’S
AJ Shokirovich
×åáûøåâñêèé ñáîðíèê 22 (3 (79)), 20-31,
2021
THE BOUNDARY MORERA THEOREM FOR DOMAIN T+ (N-1)
K Gulmirza, AJ Shokirovich
Óôèìñêèé ìàòåìàòè÷åñêèé æóðíàë 13 (3), 196-210,
2021
Estimates the Bergman kernel for classical domains É. Cartan's
JS Abdullayev
×åáûøåâñêèé ñáîðíèê 22 (3), 20-31,
2021
Laurent-Hua Loo-Keng Series with Respect to the Matrix Ball from Space Cn [m× m]
KG Kh, AJ Sh
Æóðíàë Ñèáèðñêîãî ôåäåðàëüíîãî óíèâåðñèòåòà. Ìàòåìàòèêà è ôèçèêà 14 (5 …,
2021
Laurent-Hua Luogeng Series with Respect to the Matrix Ball from Space Cn [m× m]
GK Khudayberganov, JS Abdullayev
Ñèáèðñêèé ôåäåðàëüíûé óíèâåðñèòåò. Siberian Federal University,
2021
THE BOUNDARY MORERA THEOREM FOR DOMAIN 𝜏 (𝑛− 1)
G KHUDAYBERGANOV, JS ABDULLAYEV
2021
Holomorphic continuation into a matrix ball of functions defined on a piece of its skeleton
G Khudaiberganov, JS Abdullayev
Âåñòíèê Óäìóðòñêîãî óíèâåðñèòåòà. Ìàòåìàòèêà. Ìåõàíèêà. Êîìïüþòåðíûå íàóê蠅,
2021
An analogue of Bremermann’s theorem on finding the Bergman kernel for the Cartesian product of the classical domains ℜI (m, k) and ℜII (n)
JS Abdullayev
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica 94 (3), 88-96,
2020
An analogue of Bremermann's theorem on finding the Bergman kernel for the Cartesian product of the classical domains RI (m, k) and RII (n).
J Sh Abdullayev
Buletinul Academiei de Ştiinţe a Republicii Moldova: Matematica 94 (3),
2020
THE BERGMAN KERNEL ESTIMATION OF FOR THE LIE BALL
US Rakhmonov, AJ Sh
ÑÎÂÐÅÌÅÍÍÛÅ ÏÐÎÁËÅÌÛ ÌÀÒÅÌÀÒÈÊÈ, Êàðàêàëïàêñêîì ãîñóäàðñòâåííî젅,
2020
Laplace and Hua Luogeng operators
G Khudayberganov, AM Khalknazarov, JS Abdullayev
Russian Mathematics 64 (3), 66-71,
2020
Abdullayev, Relationship between the Kernels Bergman and Cauchy-Szego in the domains τ+(n− 1) and ℜn IV
G Khudayberganov, J Sh
Journal of Siberian Federal University. Mathematics, 559-567,
2020
Relationship Between the Bergman and Cauchy-Szegö Kernels in the Domains τ+ (n - 1) and …
GK Khudayberganov, JS Abdullayev
Journal of Siberian Federal University. Mathematics & Physics 13 (5), 559-567,
2020
Relationship between the Bergman and Cauchy-Szegö kernels in the domains 𝜏+(𝑛− 1) and ℜï IV
G Khudayberganov, AJ Sh
J. Sib. Fed. Univ. Math. Phys 13 (5), 559-567,
2020
THE BOUNDARY MORERA THEOREM
G KHUDAYBERGANOV, JS ABDULLAYEV
2020
Relationship Between the Bergman and Cauchy-Szego¨ Kernels in the Domains τ + (n - 1) and ℜnIV
ÃÕ Õóäàéáåðãàíîâ, ÆØ Àáäóëëàåâ
Æóðíàë Ñèáèðñêîãî ôåäåðàëüíîãî óíèâåðñèòåòà. Ñåðèÿ: Ìàòåìàòèêà è ôèçèêà 13 …,
2020
THE BOUNDARY MORERA THEOREM FOR UNBOUNDED REALIZATION OF THE LIE BALL
G Khudayberganov, AJ Sh
FRONTIER IN MATHEMATICS AND COMPUTER SCIENCE 12, 51,
2020
Relationship between the Bergman and Cauchy-Szegö in the domains
G Khudaiberganov, JS Abdullayev
Æóðíàë Ñèáèðñêîãî ôåäåðàëüíîãî óíèâåðñèòåòà. Ñåðèÿ «Ìàòåìàòèêà è ôèçèêà» 13 …,
2020
ÑÂßÇÜ ÌÅÆÄÓ ßÄÐÀÌÈ ÁÅÐÃÌÀÍÀ È ÊÎØÈ-ÑÅÃÅ Â ÎÁËÀÑÒßÕ τ+(N-1) È ℜNIV
ÃÕ Õóäàéáåðãàíîâ, ÆØ Àáäóëëàåâ
Æóðíàë Ñèáèðñêîãî ôåäåðàëüíîãî óíèâåðñèòåòà. Ìàòåìàòèêà è ôèçèêà 13 (5 …,
2020
Relationship Between the Bergman and Cauchy-Szeg¨ o Ker-nels in the Domains+(n-1) and ℜn IV
GK Khudayberganov, JS Abdullayev
Ñèáèðñêèé ôåäåðàëüíûé óíèâåðñèòåò. Siberian Federal University,
2020
Laplace and Hua Luogeng operators
G Khudaiberganov, AM Khalknazarov, JS Abdullayev
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 74-79,
2020
Îá îïåðàòîðàõ Ëàïëàñà è Õóà Ëî-Êåíà
à Õóäàéáåðãàíîâ, ÀÌ Õàëêíàçàðîâ, ÆØ Àáäóëëàåâ
Èçâåñòèÿ âûñøèõ ó÷åáíûõ çàâåäåíèé. Ìàòåìàòèêà, 74-79,
2020
ABOUT VOLUMES OF MATRIX THIRD TYPE AND GENERALIZED LIE BALLS
U Rakhmonov, J Abdullayev
Âåñòíèê Óäìóðòñêîãî óíèâåðñèòåòà. Ìàòåìàòèêà. Ìåõàíèêà. Êîìïüþòåðíûå íàóê蠅,
2019
ABOUT REALIZATION OF LIE BALL
AJS Khudayberganov G.
Actual problems and applications of analysis, October 4-5, , Karshi …,
2019
ÎÁ ÎÄÍÎÌ ÏÐÈÌÅÐÅ ÃÎËÎÌÎÐÔÍÛÕ ÈÇÎÌÅÒÐÈÉ B^n  K^(n+1)_IV .
ÓÑÐ Æ. Ø. Àáäóëëàåâ
FUNDAMENTAL MATEMATIKA MUAMMOLARI VA ULARNING TATBIQLARI, RESPUBLIKA ILMIY …,
2019
ON HUA LO-KEN AND LAPLACE OPERATORS
AJ Khudayberganov G. , Khalknazarov A.
STEMM: Science – Technology – Education – Mathematics – Medicine. Abstracts …,
2019
Îá îäíîé ðåàëèçàöèè øàðà Ëè
ÆØÀ Ã.Õóäàéáåðãàíîâ
PROCEEDINGS of republican scientific-applied conference STATISTICS and its …,
2019
ABOUT REALIZATION OF LIE BALL
AJ Khudayberganov G.
Actual problems and applications of analysis, October 4-5, , Karshi …,
2019
Vestnik Udmurtskogo Universiteta
US Rakhmonov, AJ Sh
Matematika. Mekhanika. Komp'yuternye Nauki 29 (4), 548-557,
2019
ON VOLUMES OF MATRIX BALL OF THIRD TYPE AND GENERALIZED LIE BALLS
JAS Uktam Rakhmonov Sodiqovich
Âåñòíèê Óäìóðòñêîãî óíèâåðñèòåòà. Ìàòåìàòèêà. Ìåõàíèêà. Êîìïüþòåðíûå íàóê蠅,
2019
FORMULAS OF CARLEMAN IN THE DOMAINS OF SIEGEL
MZ Kadambayevich, AJ Shokirovich
Zbiór artykułów naukowych recenzowanych., 51,
2018
Journal of Siberian Federal University. Mathematics & Physics
GK Khudayberganov, JS Abdullayev
Journal of Siberian Federal University. Mathematics & Physics 11 (1), 40-45,
2018
ÔÎÐÌÓËÛ ÊÀÐËÅÌÀÍÀ Â ÎÁËÀÑÒßÕ ÇÈÃÅËß
ÇÊ Ìàòÿêóáîâ, ÆØ Àáäóëëàåâ
TOSHKENT SHAHRIDAGI TURIN POLITEXNIKA UNIVERSITETI, 34,
2017
THE BOUNDARY MORERA THEOREM FOR DOMAIN τ (n− 1)
G KHUDAYBERGANOV, JS ABDULLAYEV
Ðÿäû Ëîðàíà îòíîñèòåëüíî ìàòðè÷íîãî øàðà
à Õóäàéáåðãàíîâ
Èíòåãðàëüíûå ôîðìóëû â , àññîöèèðîâàííûõ ñ ðåàëèçàöèåé øàðà Ëè è íåêîòîðûå èõ ïðèëîæåíèÿ
JS Abdullayev
Îá îäíîé ðåàëèçàöèè øàðà Ëè è àâòîìîðôèçìû îáëàñòè
JS Abdullayev
Îá îäíîé ðåàëèçàöèè øàðà Ëè è àâòîìîðôèçìû îáëàñòè
ÆØ Àáäóëëàåâ
Ïðèìåíåíèÿ îðòîíîðìàëüíûõ ñèñòåì â ìàòðè÷íîì øàðå
ÆØ Àáäóëëàåâ
Èíòåãðàëüíûå ôîðìóëû â êëàññè÷åñêèõ îáëàñòÿõ è èõ ïðèëîæåíèÿ
ÆØ Àáäóëëàåâ
Èíòåãðàëüíûå ôîðìóëû â , àññîöèèðîâàííûõ ñ ðåàëèçàöèåé øàðà Ëè è íåêîòîðûå èõ ïðèëîæåíèÿ
ÆØ Àáäóëëàåâ
Uzbek Mathematical Journal 2021, Volume 65, Issue 1, pp. 17-27
AJ Sh
Abdullayev
US Rakhmonov, J Sh
Æóðíàë Ñèáèðñêîãî ôåäåðàëüíîãî óíèâåðñèòåòà Ìàòåìàòèêà è ôèçèêà 2, 0
Abdullayev, About one realization Lie ball
G Khudayberganov, J Sh
Contemporary Mathematics. Fundamental Directions, 0